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Abstract

A lattice Boltzmann method for two-phase immiscible fluids with large density differences is proposed. The difficulty

in the treatment of large density difference is resolved by using the projection method. The method can be applied to

simulate two-phase fluid flows with the density ratio up to 1000. To show the validity of the method, we apply the

method to the simulations of capillary waves, binary droplet collisions, and bubble flows. In capillary waves, the an-

gular frequencies of the oscillation of an ellipsoidal droplet are obtained in good agreement with theoretical ones. In the

simulations of binary droplet collisions, coalescence collision and two different types of separating collisions, namely

reflexive and stretching separations, can be simulated, and the boundaries of the three types of collisions are in good

agreement with an available theoretical prediction. In the bubble flows, the effect of mobility on the coalescence of two

rising bubbles is investigated. The behavior of many bubbles in a square duct is also simulated.
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1. Introduction

Recently, the lattice Boltzmann method (LBM) has been developed into an alternative and promising

numerical scheme for simulating multicomponent fluid flows. Gunstensen et al. [1] developed a multi-
component LBM based on the two-component lattice gas model. Shan and Chen [2] proposed an LBM

model with mean-field interactions for multiphase and multicomponent fluid flows. Swift et al. [3] devel-

oped an LBM model for multiphase and multicomponent fluid flows using the free-energy approach. He

et al. [4] proposed a new lattice Boltzmann multiphase model using the idea of level-set for multiphase flow.
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Inamuro et al. [5,6] also proposed an LBM for multicomponent immiscible fluids with the same density.

Ginzburg and Steiner [7] have proposed a generalized LBM model to simulate free-surface flows by

modifying the above model by Gunstensen et al. T€olke et al. [8] also have proposed an LBM for immiscible
binary fluids with variable viscosities and density ratios based on the model by Gunstensen et al. and

applied the method to the simulation of binary flows through porous media. Sankaranarayanan and

Sundaresan [9] and Sankaranarayanan et al. [10,11] have developed an implicit LBM for multicomponent

flows based on the above Shan and Chen model and used the method for the analysis of drag, lift, and

virtual mass forces in bubbly suspensions. The above LBM models have great advantages over conven-

tional methods for multiphase flows. They do not track interfaces, but can maintain sharp interfaces

without any artificial treatments. Also, the LBM is accurate for the mass conservation of each component

fluid. While most of the above LBM models for multiphase and multicomponent fluid flows are based on
heuristic ideas with no direct connection to kinetic theory, Luo [12,13] and Luo and Girimaji [14,15] have

rigorously derived the LBM models for multiphase fluids from the Enskog equation and for multicom-

ponent fluids from the corresponding kinetic equations and provided a unified framework to treat the LBM

models for multiphase and multicomponent fluids.

On the other hand, diffuse-interface methods are used for many applications to interfacial phenomena

[16–19]. Each of the above LBM models may be regarded as one of the diffuse-interface methods. In the

LBM models, the pressure tensor is introduced through the collision term. Since the LBM is classified as a

mesoscopic approach to the simulation of fluid dynamics, the combination of LBM and diffuse-interface
methods is suitable for the simulation of two-phase fluid flows.

Although the LBM is a promising method for multicomponent fluid flows, one of disadvantages is

that all above schemes are limited to small density ratios less than 10 due to the numerical instability in

the interface with large density ratios. Usually the density ratio of liquid–gas systems is larger than 100,

e.g., the density ratio of water to air is about 1000:1. Thus, the development of an LBM for two-phase

fluids with large density ratios is required. Teng et al. [20] used the total variation diminishing with

artificial compression (TVD/AC) scheme to the lattice Boltzmann multiphase model in order to stabilize

the computation for large density ratios up to 100, but the method has been applied only to the
problems with infinitesimal flows such as phase separation. The numerical instability in the interface

with large density ratios is mainly caused by spurious velocities near the interface which become larger

as the density ratio increases and do not satisfy the continuity equation. In the simulation of flows with

large density differences, a key to the problem is to assure the continuity equation near the interface at

each time step.

The aim of the present paper is to propose a heuristic LBM for two-phase fluids with large density

differences. The difficulty in the treatment of large density differences is resolved by using the projection

method [21]. In the projection method the continuity equation in the interfacial region is satisfied at every
time step. Two particle velocity distribution functions are used. One is used for the calculation of an order

parameter which distinguishes two phases, and the other is used for the calculation of a predicted velocity

of the two-phase fluid without a pressure gradient. The current velocity satisfying the continuity equation

can be obtained by using the relation between the velocity and the pressure correction which is determined

by solving the Poisson equation. In order to show the validity of the method, we apply the method to the

simulations of capillary waves, binary droplet collisions, and bubble flows.

The paper is organized as follows. In Section 2 we propose an LBM for two-phase fluids with large

density differences and derive governing equations for macroscopic variables by using the asymptotic
theory. In Section 3 we present numerical examples, capillary waves, binary droplet collisions, and bubble

flows. In capillary waves, the oscillation of an ellipsoidal droplet is calculated. In the simulations of binary

droplet collisions, coalescence collision and two different types of separating collisions, namely reflexive and

stretching separations, are simulated. In the bubble flows, the effect of mobility on the coalescence of two

bubbles is investigated. Concluding remarks are given in Section 4.
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2. Numerical method

2.1. Two-phase lattice Boltzmann method

Non-dimensional variables defined in Appendix A are used as in [23]. In the LBM, a modeled fluid,

composed of identical particles whose velocities are restricted to a finite set of N vectors ci (i ¼ 1; 2; . . . ;N ),

is considered. The fifteen-velocity model (N ¼ 15) is used in the present paper. The velocity vectors of this

model are given by

c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15½ �

¼
0 1 0 0 �1 0 0 1 �1 1 1 �1 1 �1 �1

0 0 1 0 0 �1 0 1 1 �1 1 �1 �1 1 �1

0 0 0 1 0 0 �1 1 1 1 �1 �1 �1 �1 1

264
375: ð1Þ

In the present paper we describe an athermal model for two-phase fluid. Two particle velocity distribution

functions, fi and gi, are used. The function fi is used for the calculation of an order parameter which

distinguishes two phases, and the function gi is used for the calculation of a predicted velocity of the two-
phase fluid without a pressure gradient. Although we can use any of LBM multiphase models, we use the

model by Swift et al. [3] in the present work. The evolution of the particle distribution functions fiðx; tÞ and
giðx; tÞ with velocity ci at the point x and at time t is computed by the following equations:

fiðxþ ciDx; t þ DtÞ ¼ fiðx; tÞ �
1

sf
½fiðx; tÞ � f c

i ðx; tÞ�; ð2Þ
giðxþ ciDx; t þ DtÞ ¼ giðx; tÞ �
1

sg
giðx; tÞ
�

� gci ðx; tÞ
�
þ 3Eicia

1

q
o

oxb
l

oub
oxa

���
þ oua

oxb

���
Dx; ð3Þ

where f c
i and gci are functions of Chapman–Enskog type in which the variables x and t enter only through

macroscopic variables and/or their derivatives [22], sf and sg are dimensionless single relaxation times, Dx is
a spacing of the cubic lattice, Dt is a time step during which the particles travel the lattice spacing, and the

other variables, q, l, and u, and constants Ei are defined below. The last term in the right-hand side of Eq.

(3) represents the viscous stress tensor divided by the density of the two-phase fluid. In Eqs. (2) and (3), the

function f c
i and gci are determined so as macroscopic variables satisfy desired equations as shown below. In

this sense, the present method is a heuristic LBM for two-phase fluids.

The order parameter / distinguishing two phases and the predicted velocity u� of the multicomponent

fluids are defined in terms of the two particle velocity distribution functions as follows:

/ ¼
X15
i¼1

fi; ð4Þ
u� ¼
X15
i¼1

cigi: ð5Þ

The functions f c
i and gci in Eqs. (2) and (3) are given by

f c
i ¼ Hi/þ Fi p0

"
� jf/

o2/
ox2a

� jf

6

o/
oxa

� �2
#
þ 3Ei/ciaua þ Eijf Gabð/Þciacib; ð6Þ
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gci ¼ Ei 1

�
þ 3ciaua �

3

2
uaua þ

9

2
ciacibuaub þ

3

2
sg

�
� 1

2

�
Dx

oub
oxa

�
þ oua

oxb

�
ciacib

�
þ Ei

jg

q
GabðqÞciacib �

2

3
Fi
jg

q
oq
oxa

� �2

; ð7Þ

where

E1 ¼ 2=9; E2 ¼ E3 ¼ E4 ¼ � � � ¼ E7 ¼ 1=9;

E8 ¼ E9 ¼ E10 ¼ � � � ¼ E15 ¼ 1=72;

H1 ¼ 1; H2 ¼ H3 ¼ H4 ¼ � � � ¼ H15 ¼ 0;

F1 ¼ �7=3; Fi ¼ 3Eiði ¼ 2; 3; 4; . . . ; 15Þ

ð8Þ

and

Gabð/Þ ¼
9

2

o/
oxa

o/
oxb

� 3

2

o/
oxc

o/
oxc

dab; ð9Þ

with a; b; c ¼ x; y; z (subscripts a; b, and c represent Cartesian coordinates and the summation convention is

used). In the above equations, jf is a constant parameter determining the width of the interface, jg is a

constant parameter determining the strength of the surface tension, and dab is the Kronecker delta. In Eq.

(6), p0 is given by

p0 ¼ /
ow
o/

� w ¼ /T
1

1� b/
� a/2 ð10Þ

with

wð/; T Þ ¼ /T ln
/

1� b/

� �
� a/2; ð11Þ

where w is the bulk free-energy density, and a, b, and T are free parameters determining the maximum

and minimum values of the order parameter /. It is noted that f c
i is the same as that of the model by

Swift et al. [3] except that Eq. (6) includes no quadratic term of the flow velocity ua. The last two terms

of Eq. (7) represent the effect of interface tension as described below. The term including sg represents

the negative counterpart of the viscous stress tensor appearing in the original LBM, and this term is
needed in order to vanish the original viscous stress tensor. The following finite-difference approxi-

mations are used to calculate the first and second derivatives (o/=oxa, oub=oxa, oq=oxa, and o2/=ox2a) in
Eqs. (6), (7) and (9):

ok
oxa

� 1

10Dx

X15
i¼2

ciakðxþ ciDxÞ; ð12Þ
o2k
ox2a

� 1

5Dx

X15
i¼2

kðx
"

þ ciDxÞ � 14kðxÞ
#
: ð13Þ

The density in the interface is obtained by using the cut-off values of the order parameter, /�
L and /�

G, for

the liquid and gas phases with the following relation:
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q ¼

qG; / < /�
G;

Dq
2

sin /�/�

D/� p
	 


þ 1
h i

þ qG; /�
G 6/6/�

L;

qL; / > /�
L;

8>><>>: ð14Þ

where qG and qL are the density of gas and liquid phases, respectively, Dq ¼ qL � qG, D/
� ¼ /�

L � /�
G, and

/� ¼ ð/�
L þ /�

GÞ=2. It is essential to introduce the cut-off values of the order parameter in the present

method. The maximum and minimum values of / are changed a little during calculations, and then the
change of the density of each phase is magnified in proportion to the density ratio of the two-phase fluid. In

order to keep the density of each phase constant, we introduce the cut-off values in the definition of the

density of the two-phase fluid.

The viscosity l in the interface is obtained by

l ¼ q� qG

qL � qG

ðlL � lGÞ þ lG; ð15Þ

where lG and lL are the viscosity of gas and liquid phases, respectively. The interfacial tension r is obtained
by

r ¼ jg

Z 1

�1

oq
on

� �2

dn ð16Þ

with n being the coordinate normal to the interface [16,26].

It is noted that the flux Ja of the order parameter / is given by

Ja ¼ �hM/
olc

oxa
¼ �hM

oPab
oxb

; ð17Þ

where hM is the mobility obtained below, and lc and Pab are the chemical potential and the pressure tensor

of the fluid used for the calculation of the order parameter / which are given by

lc ¼
ow
o/

� jf
o2/
ox2a

; ð18Þ

and

Pab ¼ p0

"
� jf/

o2/
ox2c

� jf

2

o/
oxc

� �2
#
dab þ jf

o/
oxa

o/
oxb

: ð19Þ
2.2. Pressure correction

Since u� is not divergence free (r � u� 6¼ 0), the correction of u� is required. The current velocity u which

satisfies the continuity equation (r � u ¼ 0) can be obtained by using the following equations:

Sh
u� u�

Dt
¼ �rp

q
; ð20Þ
r � rp
q

� �
¼ Sh

r � u�
Dt

; ð21Þ
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where Sh ¼ U=c is the Strouhal number and p is the pressure of the two-phase fluid. It is noted that

Dt ¼ ShDx. The Poisson equation (21) can be solved by various methods. In the present paper, we solve Eq.

(21) in the framework of LBM. Namely, the following evolution equation of the velocity distribution
function hi is used for the calculation of the pressure p:

hnþ1
i ðxþ ciDxÞ ¼ hni ðxÞ �

1

sh
½hni ðxÞ � EipnðxÞ� �

1

3
Ei

ou�a
oxa

Dx; ð22Þ

where n is the number of iterations and the relaxation time sh is given by

sh ¼
1

q
þ 1

2
: ð23Þ

The pressure is obtained by

p ¼
X15
i¼1

hi: ð24Þ
2.3. Algorithm of computation

We now summarize the algorithm of computation.

Step 1. Using Eqs. (2) and (3), compute fiðx; t þ DtÞ and giðx; t þ DtÞ, and then compute /ðx; t þ DtÞ and
u�ðx; t þ DtÞ with Eqs. (4) and (5). Also, qðx; t þ DtÞ is calculated with Eq. (14).

Step 2. Using Eq. (22) with Eqs. (23) and (24), compute pðx; t þ DtÞ. The iteration is repeated until

jpnþ1 � pnj=q < e is satisfied in the whole domain.
Step 3. Compute uðx; t þ DtÞ using Eq. (20).

Step 4. Advance one time step and return to Step 1.

It is found in preliminary calculations that using the present method we can simulate multiphase flows

with the density ratio up to 1000.

2.4. Governing equations for macroscopic variables

Applying the asymptotic theory [23–25] to Eqs. (2), (3) and (22), we find that the asymptotic expansions
of the macroscopic variables with respect to a small parameter k ¼ OðDxÞ, /0 ¼ /ð0Þ þ k/ð1Þ,

q0 ¼ qð0Þ þ kqð1Þ, u0a ¼ kuð1Þa þ k2uð2Þa , p0 ¼ k2pð2Þ þ k3pð3Þ, and P 0
ab ¼ P ð0Þ

ab þ kP ð1Þ
ab satisfy

Sh
o/0

ot
þ u0a

o/0

oxa
¼ hM

o2P 0
ab

oxa oxb
; ð25Þ
ou0a
oxa

¼ 0; ð26Þ
Sh
ou0a
ot

þ u0b
ou0a
oxb

¼ � 1

sgq0
op0

oxa
þ 1

q0
o

oxb
l

ou0b
oxa

 "
þ ou0a

oxb

!#
þ o

oxb

jg

q0
oq0

oxa

oq0

oxb

��
� oq0

oxc

oq0

oxc
dab

��
; ð27Þ

where hM is the mobility given by

hM ¼ sf

�
� 1

2

�
Dx: ð28Þ
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Eq. (25) is the phase-field advection–diffusion equation (the Cahn–Hilliard equation plus advection) for /.
Eqs. (26) and (27) are the continuity equation and the Navier–Stokes equations for incompressible two-

phase fluid with an interfacial tension, if we choose sg ¼ 1. The last term of the right-hand side in Eq. (27)
represents the interfacial tension given by Eq. (15).

It is pointed out that large mobilities overly damp flows [19]. The mobility given by Eq. (28) is of OðDxÞ,
unless sf is close to 1=2, but as sf approaches 1=2, Eq. (2) becomes unstable due to numerical instability. An

idea of decreasing the mobility is to add the term of EiCðoPab=oxbÞciaDx to the function f c
i given by Eq. (6),

where C is a constant. The mobility hM in this case is given by

hM ¼ sf

�
� 1

2
� 1

3
C
�
Dx: ð29Þ

By choosing a proper value of C, we can decrease the mobility even with sf ¼ 1.
3. Numerical examples

To show the validity of the present method, we apply the method to the simulations of capillary waves,

binary droplet collisions, and bubble flows.
3.1. Capillary wave

The oscillation of a spherical liquid droplet in a gas phase under the action of capillary force is con-

sidered. Initially, an ellipsoidal droplet is placed at the center of a cubic domain. The surface of the droplet
is given by r ¼ Rþ 0:1R cos 2h, where r is the distance from the center, R is the radius of the droplet, and h is
the polar angle. The deviation corresponds to the second mode of oscillations. The density ratio of the

liquid to the gas is qL=qG ¼ 50 (qL ¼ 50, qG ¼ 1). The viscosities of the droplet and the gas are

lL ¼ 8� 10�3Dx and lG ¼ 1:6� 10�4Dx, respectively. The periodic boundary condition is used on all the

sides of the domain. The quarter of the domain is calculated using the symmetry with x and y axes. The

quarter domain is divided into a 40� 40� 80 cubic lattice. The parameters in Eq. (10) are freely chosen,

and for this example their values are a ¼ 1, b ¼ 6:7, and T ¼ 3:5� 10�2; it follows that the maximum and

minimum values of the order parameter are /max ¼ 9:714� 10�2 and /min ¼ 1:134� 10�2. The cut-off
values of the order parameter are /�

L ¼ 9:2� 10�2 and /�
G ¼ 1:5� 10�2. The other parameters are fixed at

jf ¼ 0:5ðDxÞ2, sf ¼ 1, sg ¼ 1, C ¼ 0, and e ¼ 10�5. We change the radius of the droplet R and the interfacial

tension r given by Eq. (16).
Table 1

Comparison of calculated angular frequencies xDx of the oscillation of the droplet with theoretical ones

R r r Theory Present Error (%)

15Dx 14:43Dx 0:2038Dx 3.294� 10�3 3.162� 10�3 )4.0
20Dx 19:25Dx 0:05107Dx 1.070� 10�3 1.034� 10�3 )3.4
20Dx 19:25Dx 0:2012Dx 2.124� 10�3 2.068� 10�3 )2.6
20Dx 19:25Dx 0:7797Dx 4.182� 10�3 3.957� 10�3 )5.4
25Dx 24:06Dx 0:1980Dx 1.508� 10�3 1.513� 10�3 +0.3

The theoretical angular frequencies are obtained by xDx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r=qLr

3
p

, where r is the averaged radius of the initial ellipsoidal

droplet [27].



Fig. 1. Computational domain and binary droplet collision.
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The angular frequency x of the oscillation of the droplet is obtained from the time variation of the

radius of the droplet. The calculated angular frequencies x for various R and r are shown in Table 1 in

comparison with the theoretical ones [27]. It is seen from Table 1 that the calculated angular frequencies are

in good agreement with the theoretical ones within the errors of 6%.
As for spurious velocities induced in the interface, the maximum velocity in the gas phase is 2.1� 10�2

for a stationary spherical droplet with R ¼ 20Dx and r ¼ 0:2012Dx [jg ¼ 2:5� 10�4ðDxÞ2]. Since the width
of the interface is thin (�3Dx) and the interfacial tension is large in this case, the spurious velocities are

relatively large. But they do not affect the behavior of the oscillation of the droplet, because the inertia of

the gas phase is very small and the oscillation of the droplet is determined only through the ratio between

the inertia of the droplet and the interfacial tension. Also, we find that the spurious velocity becomes

smaller as the interfacial tension r decreases and as the lattice points in the interface increase. In numerical

examples of bubble flows below, spurious velocities are much smaller than the above case (the maximum
Fig. 2. Time evolution of droplet shape for We ¼ 20:2 and B ¼ 0 (t� ¼ tV =D).



Fig. 3. Time evolution of droplet shape for We ¼ 20:2 and B ¼ 0 (t� ¼ tV =D).
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spurious velocity < 5� 10�4), since much smaller interfacial tensions are used and slightly more lattice
points are distributed in the interface.

3.2. Droplet collision

Two liquid droplets with the same diameter D are placed 2D apart in a gas phase, and they collide with

the relative velocity V (see Fig. 1). The density ratio of the liquid to the gas is qL=qG ¼ 50 (qL ¼ 50, qG ¼ 1).
The viscosities of the droplet and the gas are lL ¼ 8� 10�2Dx and lG ¼ 1:6� 10�3Dx, respectively. The
dimensionless parameters for binary droplet collisions are the Weber number We ¼ qLDV

2=r, the Reynolds

number Re ¼ qLDV =lL, and the impact parameter B ¼ X=D, where X is the distance from the center of one

droplet to the relative velocity vector placed on the center of the other droplet (see Fig. 1). The periodic

boundary condition is used on all the sides of the domain. The half of the domain is calculated using the

symmetry with y ¼ Ly=2. The half domain is divided into a 192 (or 128)� 48� 96 cubic lattice. The pa-

rameters in Eq. (10) are freely chosen, and for this example their values are a ¼ 1, b ¼ 6:7, and

T ¼ 3:5� 10�2; it follows that the maximum and minimum values of the order parameter are
/max ¼ 9:714� 10�2 and /min ¼ 1:134� 10�2. The cut-off values of the order parameter are

/�
L ¼ 9:2� 10�2 and /�

G ¼ 1:5� 10�2. The other parameters are fixed at V ¼ 0:1, jf ¼ 0:5ðDxÞ2, sf ¼ 1,

sg ¼ 1, C ¼ 0, e ¼ 10�5 and D ¼ 32Dx, and jg is changed in the range of 20 < We < 80. The Reynolds

number is fixed at Re ¼ 2000.



Fig. 4. Time evolution of droplet shape for We ¼ 39:7 and B ¼ 0 (t� ¼ tV =D).

Fig. 5. Time evolution of droplet shape for We ¼ 79:7 and B ¼ 0:813 (t� ¼ tV =D).
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Fig. 6. Calculated results classified into three types of collisions. The solid and broken curves represent the theoretical prediction of the

boundaries between three types of collisions [28].

Fig. 7. Computational domain of two rising bubbles.
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Fig. 2 shows the calculated results of time evolution of droplet shape for We ¼ 20:2 and B ¼ 0. After

two droplets collide head-on, they form a disk-like droplet. Owing to the large curvature at the cir-

cumference of the disk-like droplet, there is a pressure difference between its inner and outer regions

caused by surface tension. Thus, the disk contracts radially inward and pushes the liquid outward from

its center forming a long cylinder with rounded ends. Then the cylinder oscillates until a spherical

droplet is formed. This type of collision is called ‘‘coalescence collision’’. The fluid velocity fields at

y ¼ Ly=2 are shown in Fig. 3. The complicated gas flows as well as liquid flows inside the droplets are
clearly found. Fig. 4 shows the calculated results for We ¼ 39:7 and B ¼ 0. The time evolution of

droplet shape is similar to the previous case up to the formation of a long cylinder with rounded ends.

In this case, however, the cylinder breaks into two droplets and a smaller satellite droplet in the middle.

This type of collision is called ‘‘reflexive separation collision’’. Fig. 5 shows the calculated results for



Fig. 8. Time evolution of bubble shapes (left) and velocity vectors and density contours on y ¼ Ly=2 (right) for M ¼ 1� 10�5, E ¼ 10,

qL=qG ¼ 50; and hM ¼ 0:5Dx (t� ¼ tV =D, where V is the averaged velocity of gas phase in the lower right result).
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We ¼ 79:7 and B ¼ 0:813. Since the two droplets collide at the high impact parameter, only a portion of

them contacts directly, and the remaining portions of the droplets tend to move in the direction of their

initial velocities and consequently stretch the region of the interaction. Finally, the droplet breaks into

two primary droplets and small satellite droplets. This type of collision is called ‘‘stretching separation
collision’’.

The computation time for the case of Fig. 5 required about 47 h on an AMD AthlonXP 1800+ PC

machine. The number of iterations in Step 2 of the algorithm of computation is large in a very early stage of

calculation due to initial large acceleration (e.g., over 50 iterations were required for t� < 1 in the calcu-

lation of Fig. 5), but becomes smaller than 10 after that time. As a result, 51% of the total computation time

was spent for Step 2 in this case.

We have calculated the binary droplet collisions for various Weber numbers and impact parameters, and

classified the results into the above-mentioned three types of collision in theWe–B plane as shown in Fig. 6.
It is seen that the reflexive separation collisions appear in the region of low impact parameters and high

Weber numbers over a critical value, and the stretching separation collisions occur at high impact pa-

rameters. The coalescence collisions occur between the two regions. In the figure the theoretical predictions

of the boundaries of the three types of collisions [28] are also plotted, and the present calculated results are

in good agreement with the theoretical predictions.



Fig. 9. Time evolution of bubble shapes (left) and velocity vectors and density contours on y ¼ Ly=2 (right) for M ¼ 1� 10�5, E ¼ 10,

qL=qG ¼ 50, and hM ¼ 0:01Dx (t� ¼ tV =D, where V is the averaged velocity of gas phase in the lower right result of Fig. 8).
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3.3. Bubble flow

First, we calculate the coalescence of two rising bubbles. In the calculation of bubble flows, the gravi-

tational force is considered by adding the term �3Eicizð1� ðqL=qÞÞgDx, where g is the gravitational ac-

celeration to the right-hand side of Eq. (3). Two bubbles with the same diameter D are placed ð4=3ÞD apart

in a liquid inside a rectangular domain (see Fig. 7) and is released at time t ¼ 0. The density ratio of the

liquid to the gas is qL=qG ¼ 50 (qL ¼ 50, qG ¼ 1). The dimensionless parameters for this phenomenon are

the Morton number M ¼ gl4
LðqL � qGÞ=q2

Lr
3 and the E€otv€os number E ¼ gðqL � qGÞD2=r. The periodic

boundary condition is used on all the sides of the domain. The domain is divided into an 80� 80� 160

cubic lattice. The parameters in Eq. (10) for this example are a ¼ 1, b ¼ 1, and T ¼ 2:93� 10�1; it follows
that the maximum and minimum values of the order parameter are /max ¼ 4:031� 10�1 and

/min ¼ 2:638� 10�1. The cut-off values of the order parameter are /�
L ¼ 3:80� 10�1 and /�

G ¼ 2:75� 10�1.

The other parameters are fixed at sf ¼ 1, sg ¼ 1, e ¼ 10�6, D ¼ 30Dx, lL=lG ¼ 50, jf ¼ 0:05ðDxÞ2 and

jg ¼ 1� 10�5ðDxÞ2. The Morton number and the E€otv€os number are M ¼ 1� 10�5 and E ¼ 10, respec-

tively. The mobilities of hM ¼ 0:5Dx and 0:01Dx are used.

Figs. 8 and 9 show the calculated results for hM ¼ 0:5Dx and 0:01Dx, respectively. It is seen that as the

time passes, the lower bubble catches up with the upper bubble. However, if we look at the results carefully,

it is seen that the shapes of the lower bubbles for the two cases are different. It is noted that two bubbles



Fig. 10. Time evolution of bubble shapes (upper) and velocity vectors and density contours on y ¼ Ly=2 (lower) for M ¼ 1:7� 10�11,

E ¼ 5, qL=qG ¼ 1000, and hM ¼ 0:01Dx (t� ¼ tV =D, where V is the averaged velocity of gas phase in the right result).
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coalesce at t� ¼ 1:42 for hM ¼ 0:5Dx, but two bubbles do not coalesce yet at that time for hM ¼ 0:01Dx.
Namely, it is found that the coalescence phenomena are sensitive to the value of the mobility.

Next, we calculate many bubbles rising in a square duct. Twenty-four bubbles with the same diameter D
are placed in a square duct and are released at time t ¼ 0. The density ratio is qL=qG ¼ 1000 (qL ¼ 1000,

qG ¼ 1). The periodic boundary condition is used on the top and bottom of the domain, and the bounce-back
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condition is used on the sides of the domain. The parameters of computation are the same as those used in the

previous section except D ¼ 20Dx, jf ¼ 0:08ðDxÞ2 and jg ¼ 1� 10�7ðDxÞ2. The Morton number and the

E€otv€os number are M ¼ 1:7� 10�11 and E ¼ 5, respectively. The mobility is hM ¼ 0:01Dx.
Fig. 10 shows the calculated results of many bubbles rising in a square duct. It is seen that at t� ¼ 1:86

each bubble goes up and is deformed, and the deformation becomes larger as time goes on. At t� ¼ 5:08 the

bubbles coalesce each other, and the interfaces between the gas and liquid phases are deformed into

complicated shapes. Note that the complicated flow field can be stably calculated even for the large density

ratio of qL=qG ¼ 1000. The validation of the results remains in future work.

In addition, we carried out the simulation of a single rising bubble in liquid. The terminal shapes and the

terminal Reynolds numbers of the single bubble for various Morton numbers and E€otv€os numbers are in

good agreement with available experimental data [29].
4. Concluding remarks

A lattice Boltzmann method for two-phase immiscible fluids with large density differences has been

developed. The method can simulate two-phase flows with the density ratio up to 1000. In capillary waves,

the calculated angular frequencies of the oscillation of an ellipsoidal droplet are in good agreement with

theoretical ones within the errors of 6%. In the simulations of binary droplet collisions, the calculated
results are in good agreement with an available theoretical prediction. In bubble flows, the complicated

unsteady structures of the interface and the velocity field can be stably simulated. Therefore, the method is

considered to be a promising method for simulating two-phase flows with large density differences.

The accuracy of the method would depend on the interface width related to the parameter jf , the

mobility determined by the parameters sf and C, and the lattice spacing Dx. Also, the magnitude of spu-

rious velocities in the interface is related to the parameter jg and Dx. The study of the accuracy concerning

these parameters is required in future work.
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Appendix A. Non-dimensional variables

As in [23], we use the following non-dimensional variables defined by a characteristic length L, a

characteristic particle speed c, a characteristic time scale t0 ¼ L=U , where U is a characteristic flow speed, a
reference order parameter /0, and a reference density q0:bci ¼ ci=c; x̂ ¼ x=L; t̂ ¼ t=t0;

f̂i ¼ fi=/0; ĝi ¼ gi=q0; ĥi ¼ hi=ðq0c
2Þ;

/̂ ¼ /=/0; q̂ ¼ q=q0;

û ¼ u=c; p̂ ¼ p=ðq0c
2Þ;

l̂ ¼ l=ðq0cLÞ; r̂ ¼ r=ðq0c
2LÞ; ĥM ¼ hM=ðcLÞ;

x̂ ¼ xL=c; ĝ ¼ gL=c2:

ðA:1Þ
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In the computation, we use lattice units with L ¼ Dx because of the easiness of programming. The re-

lations of the non-dimensional properties between the two units are as follows:

l̂ ¼ l̂ðL¼DxÞDx̂; r̂ ¼ r̂ðL¼DxÞDx̂; ĥM ¼ ĥMðL¼DxÞDx̂;

x̂Dx̂ ¼ x̂ðL¼DxÞ; ĝDx̂ ¼ ĝðL¼DxÞ:
ðA:2Þ

Note that the circumflex representing ‘‘non-dimensional’’ in Eqs. (A.1) and (A.2) is omitted in the paper for

simplicity.
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